direct product, non-abelian, supersoluble, monomial
Aliases: C3×C32⋊D6, C33⋊3D6, C32⋊C6⋊C6, C32⋊(S3×C6), He3⋊2(C2×C6), C32.12S32, He3⋊C2⋊3C6, (C3×He3)⋊2C22, C3⋊S3⋊(C3×S3), C3.4(C3×S32), (C3×C3⋊S3)⋊1S3, (C3×C32⋊C6)⋊2C2, (C3×He3⋊C2)⋊1C2, SmallGroup(324,117)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C3×C32⋊D6 |
Generators and relations for C3×C32⋊D6
G = < a,b,c,d,e | a3=b3=c3=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1c-1, dcd-1=c-1, ce=ec, ede=d-1 >
Subgroups: 546 in 103 conjugacy classes, 22 normal (10 characteristic)
C1, C2, C3, C3, C22, S3, C6, C32, C32, C32, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, He3, He3, C33, C33, S32, S3×C6, C32⋊C6, C32⋊C6, He3⋊C2, S3×C32, C3×C3⋊S3, C3×He3, C32⋊D6, C3×S32, C3×C32⋊C6, C3×He3⋊C2, C3×C32⋊D6
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S32, S3×C6, C32⋊D6, C3×S32, C3×C32⋊D6
(1 17 10)(2 18 11)(3 13 12)(4 14 7)(5 15 8)(6 16 9)
(1 8 12)(2 14 6)(3 17 5)(4 9 11)(7 16 18)(10 15 13)
(1 17 10)(2 11 18)(3 13 12)(4 7 14)(5 15 8)(6 9 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 3)(4 6)(7 9)(10 12)(13 17)(14 16)
G:=sub<Sym(18)| (1,17,10)(2,18,11)(3,13,12)(4,14,7)(5,15,8)(6,16,9), (1,8,12)(2,14,6)(3,17,5)(4,9,11)(7,16,18)(10,15,13), (1,17,10)(2,11,18)(3,13,12)(4,7,14)(5,15,8)(6,9,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(13,17)(14,16)>;
G:=Group( (1,17,10)(2,18,11)(3,13,12)(4,14,7)(5,15,8)(6,16,9), (1,8,12)(2,14,6)(3,17,5)(4,9,11)(7,16,18)(10,15,13), (1,17,10)(2,11,18)(3,13,12)(4,7,14)(5,15,8)(6,9,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(13,17)(14,16) );
G=PermutationGroup([[(1,17,10),(2,18,11),(3,13,12),(4,14,7),(5,15,8),(6,16,9)], [(1,8,12),(2,14,6),(3,17,5),(4,9,11),(7,16,18),(10,15,13)], [(1,17,10),(2,11,18),(3,13,12),(4,7,14),(5,15,8),(6,9,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,3),(4,6),(7,9),(10,12),(13,17),(14,16)]])
G:=TransitiveGroup(18,118);
(1 12 14)(2 7 15)(3 8 16)(4 9 17)(5 10 18)(6 11 13)
(2 7 15)(3 8 16)(5 18 10)(6 13 11)
(1 14 12)(2 7 15)(3 16 8)(4 9 17)(5 18 10)(6 11 13)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 3)(4 6)(8 12)(9 11)(13 17)(14 16)
G:=sub<Sym(18)| (1,12,14)(2,7,15)(3,8,16)(4,9,17)(5,10,18)(6,11,13), (2,7,15)(3,8,16)(5,18,10)(6,13,11), (1,14,12)(2,7,15)(3,16,8)(4,9,17)(5,18,10)(6,11,13), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(8,12)(9,11)(13,17)(14,16)>;
G:=Group( (1,12,14)(2,7,15)(3,8,16)(4,9,17)(5,10,18)(6,11,13), (2,7,15)(3,8,16)(5,18,10)(6,13,11), (1,14,12)(2,7,15)(3,16,8)(4,9,17)(5,18,10)(6,11,13), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(8,12)(9,11)(13,17)(14,16) );
G=PermutationGroup([[(1,12,14),(2,7,15),(3,8,16),(4,9,17),(5,10,18),(6,11,13)], [(2,7,15),(3,8,16),(5,18,10),(6,13,11)], [(1,14,12),(2,7,15),(3,16,8),(4,9,17),(5,18,10),(6,11,13)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,3),(4,6),(8,12),(9,11),(13,17),(14,16)]])
G:=TransitiveGroup(18,126);
(1 7 4)(2 8 5)(3 9 6)(10 19 25)(11 20 26)(12 21 27)(13 16 22)(14 17 23)(15 18 24)
(1 16 19)(3 21 18)(4 13 10)(6 12 15)(7 22 25)(9 27 24)
(1 19 16)(2 17 20)(3 21 18)(4 10 13)(5 14 11)(6 12 15)(7 25 22)(8 23 26)(9 27 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
(1 2)(4 5)(7 8)(10 14)(11 13)(16 20)(17 19)(22 26)(23 25)
G:=sub<Sym(27)| (1,7,4)(2,8,5)(3,9,6)(10,19,25)(11,20,26)(12,21,27)(13,16,22)(14,17,23)(15,18,24), (1,16,19)(3,21,18)(4,13,10)(6,12,15)(7,22,25)(9,27,24), (1,19,16)(2,17,20)(3,21,18)(4,10,13)(5,14,11)(6,12,15)(7,25,22)(8,23,26)(9,27,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,2)(4,5)(7,8)(10,14)(11,13)(16,20)(17,19)(22,26)(23,25)>;
G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,19,25)(11,20,26)(12,21,27)(13,16,22)(14,17,23)(15,18,24), (1,16,19)(3,21,18)(4,13,10)(6,12,15)(7,22,25)(9,27,24), (1,19,16)(2,17,20)(3,21,18)(4,10,13)(5,14,11)(6,12,15)(7,25,22)(8,23,26)(9,27,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,2)(4,5)(7,8)(10,14)(11,13)(16,20)(17,19)(22,26)(23,25) );
G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,19,25),(11,20,26),(12,21,27),(13,16,22),(14,17,23),(15,18,24)], [(1,16,19),(3,21,18),(4,13,10),(6,12,15),(7,22,25),(9,27,24)], [(1,19,16),(2,17,20),(3,21,18),(4,10,13),(5,14,11),(6,12,15),(7,25,22),(8,23,26),(9,27,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)], [(1,2),(4,5),(7,8),(10,14),(11,13),(16,20),(17,19),(22,26),(23,25)]])
G:=TransitiveGroup(27,125);
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 3L | 3M | 3N | 6A | ··· | 6F | 6G | ··· | 6O |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 9 | 9 | 9 | 1 | 1 | 2 | 2 | 2 | 6 | ··· | 6 | 12 | 12 | 12 | 9 | ··· | 9 | 18 | ··· | 18 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | S3×C6 | S32 | C3×S32 | C32⋊D6 | C3×C32⋊D6 |
kernel | C3×C32⋊D6 | C3×C32⋊C6 | C3×He3⋊C2 | C32⋊D6 | C32⋊C6 | He3⋊C2 | C3×C3⋊S3 | C33 | C3⋊S3 | C32 | C32 | C3 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 2 | 4 |
Matrix representation of C3×C32⋊D6 ►in GL6(𝔽7)
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(7))| [2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,2,0,0,0,4,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0],[0,0,4,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,2,0,0,0,0,0,0,0,1] >;
C3×C32⋊D6 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes D_6
% in TeX
G:=Group("C3xC3^2:D6");
// GroupNames label
G:=SmallGroup(324,117);
// by ID
G=gap.SmallGroup(324,117);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,297,2164,382,7781,3899]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1*c^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations